The mismeasurement of humans: classification as “othering”
I was part of a short, but interesting discussion last night regarding this very good article on the political implications of data analysis. The argument made (assuming I understood it correctly) was simply that statistical measures are inherently ideological since they impose a particular view of the world from one social group (us, the elite) on another (the non-elite). She takes this further, stating that though the voice of the elite can be heard through anecdotes (and opinionated blog posts), the experience of the non-elite relies on statistics and numbers. Statistics, then, is the language of power.
The conversation went further to discuss the implications of statistical methods themselves, particularly the measures of central tendency: the mean, median and mode. With perfectly symmetrical data, these measures are all the same, but, of course, no set of data is perfectly symmetrical, so that the application of each will produce different results. Though any responsible statistician would make statements of assumptions, limitations and appropriateness, with politics, these statements are overlooked and the method chosen is often that which best supports one’s political position, asking for trouble.
Moreover, the measure of central tendency itself in inherently flawed since it concentrates on the center and silences the extremes, supporting the status quo, or so it was argued. The choice of measure, I would argue, depends on the goals of the particular study. For example, a study which sought to determine if average graduation rates lower for blacks than whites would necessarily use a measure of central tendency, while a study on which students in a particular school are the least likely to graduate might look at outliers and extremes.
Either way, I agreed with the writer that, no matter what, we are influenced by our ideology. However, there is a difference between performing a study which seeks to maintain impartiality for the greater good and one which seeks to deceive in order to merely win a political battle, particularly among those who benefit from marginalizing, for example, the poor and disenfranchised.
However, I found this passage quite interesting and it can be applied to a post on this blog regarding what we do and don’t know about the poor:
Perhaps statistics should be considered a technology of mistrust—statistics are used when personal experience is in doubt because the analyst has no intimate knowledge of it. Statistics are consistently used as a technology of the educated elite to discuss the lower classes and subaltern populations, those individuals that are considered unknowable and untrustworthy of delivering their own accounts of their daily life. A demand for statistical proof is blatant distrust of someone’s lived experience. The very demand for statistical proof is otherizing because it defines the subject as an outsider, not worthy of the benefit of the doubt.
Part of my academic work focuses on the refinement of measurements of poverty. I am keenly aware of the “othering” of this process and how these measurements use a language of the educated elite (me) to speak for the daily experiences of people not like me.
This “othering” is not limited to statistics at all. Even merely referring to “the poor” is a condescending labeling of a group of people who are mostly powerless to speak for themselves within global power structures. Moreover, “the poor” ignores the diverse and varied experiences of most of humanity.
When I first entered the School of Public Health at UM, I was extremely uncomfortable with the language used in studies of ethnicity and public health in the United States. Studies would simply throw people into simplistic categories of black, white, hispanic, asian and “other” (whatever that is), ignoring the great diversity of people within, for example, urban slums. The method of categorization seemed to be a horrible anachronism and bought back awful memories of Mississippi. Simply putting people into neat categories risked continuing an already divisive view of the world.
However, the more I thought about it, the method is justified since we are looking at the effects of a racist view of the world on the very people who are the most burdened by it. Certainly, there are better ways of viewing the world, but when criticizing social power structures, it can be advantageous to speak its language. I still don’t like it, but I’m at least more understanding of it.
It’s a fine thread to walk. On the one hand, as advocates for “the poor,” we have to work within the very structures which oppress, exploit and ignore them. To succeed, however uncomfortable it may be, we may be required to adopt the language of those structures. On the other, we must remain aware of the potentially dire implications of the ways in which we describe those we advocate for and how they can be misused.
Does the environment cause poverty?
African countries are blessed with ample cropland and resources, but suffer from crippling and unforgivable levels of poverty, have some of the shortest lifespans on the planet and the highest rates of infant mortality in the world. Meanwhile, Japan, Korea, Sweden, Switzerland and Singapore are wholly the opposite, yet mostly lacking in everything that Africa has. Clearly, the picture is more complicated than merely having access to a natural resources.
However, within countries, the picture might be different. African countries are complex and diverse places. Poverty is often confined to the most unproductive regions, areas with poor soils, poor rainfalls or dangerous terrains.
I was just working with some socio-economic data from one of our field sites, and noticed some interesting patterns (note the map up top). In Kwale, a small area along the Coast, socio-economic levels vary widely, but neighbors tend to be like neighbors and patterns of socio-economic clustering emerge.
Note that the poorest of the poor are concentrated to an area in the middle, which I know to be extremely dry, difficult to get to, difficult to farm and generally tough to live in.
I tried to see if socio-economic status (as measured through a composite material wealth index a la Filmer and Pritchett but using multiple correspondence analysis rather than PCA) was related to any environmental variables that I might have data for.
I fit a generalized additive model using the continuous measure of of wealth from the MCA as an outcome. Knowing that very few things in nature or human societies are linear, I also applied smoothing to the predictors to relax these assumptions. The results can be seen in the plot at the bottom.
A few interesting things came out. While it is hard to tell much about the poorest of the poor, we can tell something about the most wealthy. The richest in this poor area, tend to live in areas with the richest vegetation (possibly representing water), a high altitude (low temperature), high relief (no standing water) and in locations distant from a wildlife reserve (far from annoying and dangerous wildlife).
I’m not sure the wildlife reserve is meaningful (unless the reserve was an area undesirable for human habitation to begin with), but the others might be and represent a trend seen in other Sub-Saharan contexts. Areas without malarious swamps and ample farm land tend to do the best. Central Province, one of the most developed areas of Kenya, would be an example.
But the question has to be, does a harsh environment doom people to poverty, or do people self shuffle into and compete for access to more favorable areas? Is environmentally determined poverty (or wealth) an accident of birth, or the result of competitive selection?
Alright, back to work. Oh wait, this is my work. Well….